Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 848
Filtrar
1.
Cells ; 13(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607004

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is a serine-threonine protein kinase belonging to the ROCO protein family. Within the kinase domain of LRRK2, a point mutation known as LRRK2 G2019S has emerged as the most prevalent variant associated with Parkinson's disease. Recent clinical studies have indicated that G2019S carriers have an elevated risk of cancers, including colon cancer. Despite this observation, the underlying mechanisms linking LRRK2 G2019S to colon cancer remain elusive. In this study, employing a colitis-associated cancer (CAC) model and LRRK2 G2019S knock-in (KI) mouse model, we demonstrate that LRRK2 G2019S promotes the pathogenesis of colon cancer, characterized by increased tumor number and size in KI mice. Furthermore, LRRK2 G2019S enhances intestinal epithelial cell proliferation and inflammation within the tumor microenvironment. Mechanistically, KI mice exhibit heightened susceptibility to DSS-induced colitis, with inhibition of LRRK2 kinase activity ameliorating colitis severity and CAC progression. Our investigation also reveals that LRRK2 G2019S promotes inflammasome activation and exacerbates gut epithelium necrosis in the colitis model. Notably, GSDMD inhibitors attenuate colitis in LRRK2 G2019S KI mice. Taken together, our findings offer experimental evidence indicating that the gain-of-kinase activity in LRRK2 promotes colorectal tumorigenesis, suggesting LRRK2 as a potential therapeutic target in colon cancer patients exhibiting hyper LRRK2 kinase activity.


Assuntos
Colite , Neoplasias do Colo , Camundongos , Humanos , Animais , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Mutação/genética , Neoplasias do Colo/genética , Inflamação/genética , Colite/induzido quimicamente , Colite/complicações , Colite/genética , Microambiente Tumoral , Gasderminas , Proteínas de Ligação a Fosfato/genética
2.
J Mol Model ; 30(5): 133, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625397

RESUMO

CONTEXT: Parkinson's disease is a neurodegenerative condition characterized by the degeneration of dopaminergic neurons, resulting in motor disabilities such as rigidity, bradykinesia, postural instability, and resting tremors. While the exact cause of Parkinson's remains uncertain, both familial and sporadic forms are often associated with the G2019S mutation found in the kinase domain of LRRK2. Roco4 is an analogue of LRRK2 protein in Dictyostelium discoideum which is an established model organism to investigate LRRK2 inhibitors. In this study, the potential treatment of Parkinson's was explored by inhibiting the activity of the mutated LRRK2 protein using Roco4 as the base protein structure. Mongolicain-A and Bacoside-A exhibited significant selectivity towards the G2019S mutation, displaying a binding affinity of - 12.3 Kcal/mol and - 11.4 Kcal/mol respectively. Mongolicain-A demonstrated increased specificity towards Roco4, while Bacoside-A demonstrated significant binding affinity to all 34 kinases proteins alike. The Molecular Dynamics Studies (MDS) results strongly suggests that Mongolicain-A is a significant inhibitor of Roco4 kinase. ADMET and drugability analysis also suggests that among the two best ligands, Mongolicain-A demonstrates significant physicochemical properties to be suitable for best drug like molecule. Based on the in-silico molecular docking, molecular dynamic simulation, ADMET and drugability analyses, it is strongly suggested that, Mongolicain-A could be a potential candidate for treatment and management of Parkinson's disease via inhibition of LRRK2 protein. Further in-vitro and in-vivo investigations are in demand to validate these findings. METHODS: To identify potential inhibitors, 3069 phytochemicals were screened using molecular docking via AutoDock Vina. Molecular Dynamics Simulation was carried out using GROMACS 2022.2 for a duration of 100ns per complex to study the stability and inhibition potential of the protein ligand complexes. ADMET analysis was carriedout using Molinspiration and preADMET web tool.


Assuntos
Antineoplásicos , Dictyostelium , Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Doença de Parkinson/tratamento farmacológico , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular
3.
Transl Neurodegener ; 13(1): 13, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438877

RESUMO

BACKGROUND: Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease (PD). These mutations elevate the LRRK2 kinase activity, making LRRK2 kinase inhibitors an attractive therapeutic. LRRK2 kinase activity has been consistently linked to specific cell signaling pathways, mostly related to organelle trafficking and homeostasis, but its relationship to PD pathogenesis has been more difficult to define. LRRK2-PD patients consistently present with loss of dopaminergic neurons in the substantia nigra but show variable development of Lewy body or tau tangle pathology. Animal models carrying LRRK2 mutations do not develop robust PD-related phenotypes spontaneously, hampering the assessment of the efficacy of LRRK2 inhibitors against disease processes. We hypothesized that mutations in LRRK2 may not be directly related to a single disease pathway, but instead may elevate the susceptibility to multiple disease processes, depending on the disease trigger. To test this hypothesis, we have previously evaluated progression of α-synuclein and tau pathologies following injection of proteopathic seeds. We demonstrated that transgenic mice overexpressing mutant LRRK2 show alterations in the brain-wide progression of pathology, especially at older ages. METHODS: Here, we assess tau pathology progression in relation to long-term LRRK2 kinase inhibition. Wild-type or LRRK2G2019S knock-in mice were injected with tau fibrils and treated with control diet or diet containing LRRK2 kinase inhibitor MLi-2 targeting the IC50 or IC90 of LRRK2 for 3-6 months. Mice were evaluated for tau pathology by brain-wide quantitative pathology in 844 brain regions and subsequent linear diffusion modeling of progression. RESULTS: Consistent with our previous work, we found systemic alterations in the progression of tau pathology in LRRK2G2019S mice, which were most pronounced at 6 months. Importantly, LRRK2 kinase inhibition reversed these effects in LRRK2G2019S mice, but had minimal effect in wild-type mice, suggesting that LRRK2 kinase inhibition is likely to reverse specific disease processes in G2019S mutation carriers. Additional work may be necessary to determine the potential effect in non-carriers. CONCLUSIONS: This work supports a protective role of LRRK2 kinase inhibition in G2019S carriers and provides a rational workflow for systematic evaluation of brain-wide phenotypes in therapeutic development.


Assuntos
Encéfalo , Neurônios Dopaminérgicos , Animais , Humanos , Camundongos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Corpos de Lewy , Camundongos Transgênicos , Mutação/genética
4.
J Cell Biol ; 223(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38512027

RESUMO

Gain-of-function mutations in the LRRK2 gene cause Parkinson's disease (PD), characterized by debilitating motor and non-motor symptoms. Increased phosphorylation of a subset of RAB GTPases by LRRK2 is implicated in PD pathogenesis. We find that increased phosphorylation of RAB3A, a cardinal synaptic vesicle precursor (SVP) protein, disrupts anterograde axonal transport of SVPs in iPSC-derived human neurons (iNeurons) expressing hyperactive LRRK2-p.R1441H. Knockout of the opposing protein phosphatase 1H (PPM1H) in iNeurons phenocopies this effect. In these models, the compartmental distribution of synaptic proteins is altered; synaptophysin and synaptobrevin-2 become sequestered in the neuronal soma with decreased delivery to presynaptic sites along the axon. We find that RAB3A phosphorylation disrupts binding to the motor adaptor MADD, potentially preventing the formation of the RAB3A-MADD-KIF1A/1Bß complex driving anterograde SVP transport. RAB3A hyperphosphorylation also disrupts interactions with RAB3GAP and RAB-GDI1. Our results reveal a mechanism by which pathogenic hyperactive LRRK2 may contribute to the altered synaptic homeostasis associated with characteristic non-motor and cognitive manifestations of PD.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Vesículas Sinápticas , Proteína rab3A de Ligação ao GTP , Humanos , Transporte Axonal , Axônios , Homeostase , Cinesinas , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/genética , Fosforilação , Proteína rab3A de Ligação ao GTP/genética
5.
Environ Pollut ; 347: 123643, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428793

RESUMO

Heat exposure induces excessive hyperthermia associated with systemic inflammatory response that leads to multiple organ dysfunction including acute lung injury. However, how heat impairs the lung remains elusive so far. We aimed to explore the underlying mechanism by focusing on leucine-rich repeat kinase 2 (LRRK2), which was associated with lung homeostasis. Both in vivo and in vitro models were induced by heat exposure. Firstly, heat exposure exerted core temperature (Tc) disturbance, pulmonary dysfunction, atelectasis, inflammation, impaired energy metabolism, and reduced surfactant proteins in the lung of mice. In addition, decreased LRRK2 expression and increased heat shock proteins (HSPs) 70 were observed with heat exposure in both the lung of mice and alveolar type II epithelial cells (AT2). Furthermore, LRRK2 inhibition aggravated heat exposure-initiated Tc dysregulation, injury in the lung and AT2 cells, and enhanced HSP70 expression. In conclusion, LRRK2 is involved in heat-induced acute lung injury and AT2 cell dysfunction.


Assuntos
Lesão Pulmonar Aguda , Lesão Pulmonar , Humanos , Células Epiteliais Alveolares/metabolismo , Pulmão , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo
6.
J Med Chem ; 67(4): 2559-2569, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38305157

RESUMO

Parkinson's disease (PD) is one of the most highly debilitating neurodegenerative disorders, which affects millions of people worldwide, and leucine-rich repeat kinase 2 (LRRK2) mutations have been involved in the pathogenesis of PD. Developing a potent LRRK2 positron emission tomography (PET) tracer would allow for in vivo visualization of LRRK2 distribution and expression in PD patients. In this work, we present the facile synthesis of two potent and selective LRRK2 radioligands [11C]3 ([11C]PF-06447475) and [18F]4 ([18F]PF-06455943). Both radioligands exhibited favorable brain uptake and specific bindings in rodent autoradiography and PET imaging studies. More importantly, [18F]4 demonstrated significantly higher brain uptake in the transgenic LRRK2-G2019S mutant and lipopolysaccharide (LPS)-injected mouse models. This work may serve as a roadmap for the future design of potent LRRK2 PET tracers.


Assuntos
Morfolinas , Nitrilas , Doença de Parkinson , Pirimidinas , Camundongos , Animais , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Leucina , Tomografia por Emissão de Pósitrons/métodos , Doença de Parkinson/metabolismo , Mutação
7.
CPT Pharmacometrics Syst Pharmacol ; 13(4): 649-659, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369942

RESUMO

As Parkinson's disease (PD) progresses, there are multiple biomarker changes, and sex and genetic variants may influence the rate of progression. Data-driven, long-term disease progression model analysis may provide precise knowledge of the relationships between these risk factors and progression and would allow for the selection of appropriate diagnosis and treatment according to disease progression. To construct a long-term disease progression model of PD based on multiple biomarkers and evaluate the effects of sex and leucine-rich repeat kinase 2 (LRRK2) mutations, a technique derived from the nonlinear mixed-effects model (Statistical Restoration of Fragmented Time course [SReFT]) was applied to datasets of patients provided by the Parkinson's Progression Markers Initiative. Four biomarkers, including the Unified PD Rating Scale, were used, and a covariate analysis was performed to investigate the effects of sex and LRRK2-related mutations. A model of disease progression over ~30 years was successfully developed using patient data with a median of 6 years. Covariate analysis suggested that female sex and LRRK2 G2019S mutations were associated with 21.6% and 25.4% significantly slower progression, respectively. LRRK2 rs76904798 mutation also tended to delay disease progression by 10.4% but the difference was not significant. In conclusion, a long-term PD progression model was successfully constructed using SReFT from relatively short-term individual patient observations and depicted nonlinear changes in relevant biomarkers and their covariates, including sex and genetic variants.


Assuntos
Doença de Parkinson , Humanos , Feminino , Doença de Parkinson/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação , Biomarcadores , Progressão da Doença
8.
Stem Cell Reports ; 19(2): 163-173, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38307024

RESUMO

Mutations in the LRRK2 gene cause familial Parkinson's disease presenting with pleomorphic neuropathology that can involve α-synuclein or tau accumulation. LRRK2 mutations are thought to converge upon a pathogenic increase in LRRK2 kinase activity. A subset of small RAB GTPases has been identified as LRRK2 substrates, with LRRK2-dependent phosphorylation resulting in RAB inactivation. We used CRISPR-Cas9 genome editing to generate a novel series of isogenic iPSC lines deficient in the two most well-validated LRRK2 substrates, RAB8a and RAB10, from deeply phenotyped healthy control lines. Thorough characterization of NGN2-induced neurons revealed opposing effects of RAB8a and RAB10 deficiency on lysosomal pH and Golgi organization, with isolated effects of RAB8a and RAB10 ablation on α-synuclein and tau, respectively. Our data demonstrate largely antagonistic effects of genetic RAB8a or RAB10 inactivation, which provide discrete insight into the pathologic features of their biochemical inactivation by pathogenic LRRK2 mutation in human disease.


Assuntos
alfa-Sinucleína , Proteínas rab de Ligação ao GTP , Humanos , alfa-Sinucleína/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Mutação , Neurônios/metabolismo , Fosforilação , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
9.
Sci Rep ; 14(1): 4984, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424139

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is a gene related to familial Parkinson's disease (PD). It has been associated with nonmotor symptoms such as disturbances in the visual system affecting colour discrimination and contrast sensitivity. This study examined how deficiency of LRRK2 impacts visual processing in adult rats. Additionally, we investigated whether these changes can be modelled in wild-type rats by administering the LRRK2 inhibitor PFE360. Visual evoked potentials (VEPs) and steady-state visual evoked potentials (SSVEPs) were recorded in the visual cortex and superior colliculus of female LRRK2-knockout and wild-type rats to study how the innate absence of LRRK2 changes visual processing. Exposing the animals to stimulation at five different wavelengths revealed an interaction between genotype and the response to stimulation at different wavelengths. Differences in VEP amplitudes and latencies were robust and barely impacted by the presence of the LRRK2 inhibitor PFE360, suggesting a developmental effect. Taken together, these results indicate that alterations in visual processing were related to developmental deficiency of LRRK2 and not acute deficiency of LRRK2, indicating a role of LRRK2 in the functional development of the visual system and synaptic transmission.


Assuntos
Potenciais Evocados Visuais , Córtex Visual , Animais , Feminino , Ratos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação , Transmissão Sináptica , Percepção Visual
10.
Biochem J ; 481(4): 265-278, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38299383

RESUMO

The identification of multiple genes linked to Parkinson's disease (PD) invites the question as to how they may co-operate. We have generated isogenic cell lines that inducibly express either wild-type or a mutant form of the retromer component VPS35 (D620N), which has been linked to PD. This has enabled us to test proposed effects of this mutation in a setting where the relative expression reflects the physiological occurrence. We confirm that this mutation compromises VPS35 association with the WASH complex, but find no defect in WASH recruitment to endosomes, nor in the distribution of lysosomal receptors, cation-independent mannose-6-phosphate receptor and Sortilin. We show VPS35 (D620N) enhances the activity of the Parkinson's associated kinase LRRK2 towards RAB12 under basal conditions. Furthermore, VPS35 (D620N) amplifies the LRRK2 response to endolysosomal stress resulting in enhanced phosphorylation of RABs 10 and 12. By comparing different types of endolysosomal stresses such as the ionophore nigericin and the membranolytic agent l-leucyl-l-leucine methyl ester, we are able to dissociate phospho-RAB accumulation from membrane rupture.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Mutação , Lisossomos/genética , Lisossomos/metabolismo , Endossomos/genética , Endossomos/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo
11.
Stem Cell Res ; 75: 103297, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219303

RESUMO

Parkinson's disease (PD) is a common movement disorder. In this study, we generated an induced pluripotent stem cell (iPSC) line from the dermal fibroblasts of a 68-year-old female patient, carrying LRRK2 and DNAJC6 mutations. This iPSC line will be a useful tool for investigating the pathogenesis and for developing treatment for PD.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Idoso , Feminino , Humanos , China , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação/genética , Doença de Parkinson/patologia
12.
Clin Transl Sci ; 17(1): e13720, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38266062

RESUMO

The Parkinson's Progression Marker Initiative (PPMI) aims to identify biomarkers for Parkinson's disease (PD) risk, onset, and progression. This study focuses on the G2019S missense mutation in the LRRK2 gene, which is associated with hereditary and sporadic PD. Utilizing data from the PPMI database, we conducted an analysis of baseline clinical characteristics, as well as serum and cerebrospinal fluid levels in two groups: patients with PD with the G2019S mutation (PD + G2019S) and patients with PD without the mutation (PD-G2019S). Multiple linear regression and longitudinal analysis were performed, controlling for confounding factors. Compared to the PD-G2019S group, the PD + G2019S group showed more obvious initial motor dysfunction-higher baseline Movement Disorder Society-Sponsored Revision of the Unified Parkinson Disease Rating Scale (MDS-UPDRS) scores (false discovery rate [FDR]-adjusted p < 0.001), but progressed more slowly. Mechanism of Coordinated Access and activities of daily living (ADL) scores were lower at baseline (FDR-adjusted p < 0.001), whereas Scales for Outcomes of Parkinson's Disease (SCOPA)-Thermoregulatory (FDR-adjusted p = 0.015) scores were higher, emphasizing the increase of non-motor symptoms associated with LRRK2-G2019S mutation. During the follow-up period, the motor and non-motor symptoms changed dynamically with time, and there were longitudinal differences in the scores of MDS-UPDRS (FDR-adjusted PI = 0.013, PII = 0.008, PIV < 0.001), Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease (FDR-adjusted p = 0.027), SCOPA-Thermoregulatory (FDR-adjusted p = 0.021), and ADL (FDR-adjusted p = 0.027) scale scores. PD associated with the LRRK2 G2019S mutation demonstrated more severe symptoms at baseline but slower progression. Motor complications and thermoregulatory disorders were more pronounced.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Atividades Cotidianas , Mutação , Mutação de Sentido Incorreto , Bases de Dados Factuais , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética
14.
J Integr Neurosci ; 23(1): 16, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38287861

RESUMO

BACKGROUND: Mutations in the glucocerebrosidase (GBA1) and leucine-rich repeat kinase 2 (LRRK2) genes, encoding lysosomal enzyme glucocerebrosidase (GCase) and leucine-rich repeat kinase 2 (LRRK2), respectively, are the most common related to Parkinson's disease (PD). Recent data suggest a possible functional interaction between GCase and LRRK2 and their involvement in sphingolipid metabolism. The aim of the present study was to describe the clinical course and evaluate the lysosomal enzyme activities and sphingolipid concentrations in blood of patients with PD associated with dual mutations p.N370S GBA1 and p.G2019S LRRK2 (p.N370S/GBA-p.G2019S/LRRK2-PD) as well as in blood of asymptomatic mutation carriers (p.N370S/GBA1-p.G2019S/LRRK2-carrier). METHODS: One patient with p.N370S/GBA1-p.G2019S/LRRK2-PD and one p.N370S/GBA1-p.G2019S/LRRK2-carrier were enrolled. GBA1-associated PD (GBA1-PD), LRRK2-associated PD (LRRK2-PD), sporadic PD (sPD) patients were described earlier by our research group. A neuropsychiatric examination of the p.N370S/GBA1-p.G2019S/LRRK2-PD patient was carried out using scales (Montreal Cognitive Assessment scale (MoCA), Mini-mental State Examination scale (MMSE), Frontal Assessment Batter scale (FAB), Hospital Anxiety, and Depression Scale (HADS), etc). Lysosomal enzyme activity (GCase, alpha-galactosidase [GLA], acid sphingomyelinase [ASMase], galactosylcerebrosidase [GALC]) and sphingolipid concentrations (hexasylsphingosine [HexSph], lysoglobotriaosylsphingosine [LysoGb3], lysosphingomyelin [LysoSM]) were assessed with high-performance liquid chromatography-tandem mass spectrometry in blood. The following comparison with the previously described groups of GBA1-PD and sPD patients were conducted. RESULTS: Clinical features of p.N370S/GBA1-p.G2019S/LRRK2-PD included an early age of onset of the disease (46 years) and mild cognitive and affective disorders (MMSE = 29, MoCA = 23), despite a long (24 years) course of the disease. Interestingly, no differences were found in hydrolase activity and lysosphingolipid concentrations between the p.N370S/GBA1-p.G2019S/LRRK2-PD patient and GBA1-PD patients. However, GCase activity was lower in these groups than in LRRK2-PD, sPD, and controls. Additionally, the p.N370S/GBA1-p.G2019S/LRRK2-PD patient was characterized by a pronounced decreased in ASMase activity and increased LysoSM concentration compared to the p.N370S/GBA1-p.G2019S/LRRK2-carrier (p = 0.023, p = 0.027, respectively). CONCLUSIONS: Based on one patient, our results indicate a protective effect of the p.G2019S mutation in the LRRK2 gene on clinical course of p.N370S/GBA1-PD. The identified pronounced alteration of ASMase activity and LysoSM concentration in p.N370S/GBA1-p.G2019S/LRRK2-PD provide the basis for the further research.


Assuntos
Glucosilceramidase , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Humanos , Pessoa de Meia-Idade , Progressão da Doença , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Hidrolases/genética , Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Lisossomos/metabolismo , Mutação , Doença de Parkinson/genética , Esfingolipídeos
15.
Neurol Sci ; 45(1): 309-313, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37752324

RESUMO

BACKGROUND: Multiple system atrophy (MSA) is considered a primarily sporadic neurodegenerative disease, but the role of genetic is poorly understood. CASE: We present a female patient of Moroccan origin who developed a rapidly progressive non-levodopa responsive parkinsonism, gait and balance problems, and dysautonomia including severe bulbar symptoms. She was diagnosed with MSA Parkinsonian-type (MSA-P) and suddenly died at night at 58 years of age. Reduced striatal DAT-SPECT, putaminal hyperintensity on T2-MRI, and hypometabolism with FDG-PET were present. Genetic testing documented a G2019S mutation in the LRRK2 gene. A skin biopsy was obtained and used to perform alpha-synuclein RT-QuIC, which was negative, and immunohistochemical analysis, which demonstrated abnormal alpha-synuclein deposits in cutaneous nerves. Elevated blood neurofilament light chain levels were also documented. CONCLUSIONS: LRRK2 mutations are the most common cause of monogenic Parkinson's disease (PD) and G2019S is the most frequent variant. Our patient presented with biological, clinical, and radiological features of MSA, but genetic testing revealed a G2019S LRRK2 mutation, which has been previously reported only in one other case of pathologically proven MSA but with mild progression. In our patient, post-mortem confirmation could not be performed, but RT-QuIC and immunohistochemical findings on skin biopsy support the diagnosis of MSA. G2019S LRRK2 may be linked to an increased risk of MSA. Cases of atypical parkinsonism with rapid disease course should be screened for PD-related genes especially in populations with a high prevalence of mutations in known genes.


Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Feminino , alfa-Sinucleína/genética , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Atrofia de Múltiplos Sistemas/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/genética
16.
Trends Neurosci ; 47(1): 1-3, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37858439

RESUMO

In a recent study, Liu and colleagues demonstrated a role for the purine biosynthesis enzyme ATIC and its substrate in regulating the protein levels of the Parkinson's disease kinase LRRK2, which rescues neurodegeneration and neuroinflammation in distinct animal models. This work highlights a novel avenue to target LRRK2 protein levels as a strategy to prevent neurodegeneration in Parkinson's disease.


Assuntos
Doença de Parkinson , Animais , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Modelos Animais , Mutação
18.
Bioorg Chem ; 143: 106972, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37995640

RESUMO

Parkinson's disease (PD) is an age-related second most common progressive neurodegenerative disorder that affects millions of people worldwide. Despite decades of research, no effective disease modifying therapeutics have reached clinics for treatment/management of PD. Leucine-rich repeat kinase 2 (LRRK2) which controls membrane trafficking and lysosomal function and its variant LRRK2-G2019S are involved in the development of both familial and sporadic PD. LRRK2, is therefore considered as a legitimate target for the development of therapeutics against PD. During the last decade, efforts have been made to develop effective, safe and selective LRRK2 inhibitors and also our understanding about LRRK2 has progressed. However, there is an urge to learn from the previously designed and reported LRRK2 inhibitors in order to effectively approach designing of new LRRK2 inhibitors. In this review, we have aimed to cover the pre-clinical studies undertaken to develop small molecule LRRK2 inhibitors by screening the patents and other available literature in the last decade. We have highlighted LRRK2 as targets in the progress of PD and subsequently covered detailed design, synthesis and development of diverse scaffolds as LRRK2 inhibitors. Moreover, LRRK2 inhibitors under clinical development has also been discussed. LRRK2 inhibitors seem to be potential targets for future therapeutic interventions in the treatment and management of PD and this review can act as a cynosure for guiding discovery, design, and development of selective and non-toxic LRRK2 inhibitors. Although, there might be challenges in developing effective LRRK2 inhibitors, the opportunity to successfully develop novel therapeutics targeting LRRK2 against PD has never been greater.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação
19.
Mol Neurobiol ; 61(2): 953-970, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37674036

RESUMO

Cypermethrin impairs mitochondrial function, induces redox imbalance, and leads to Parkinsonism in experimental animals. Knockdown of deglycase-1 (DJ-1) gene, which encodes a redox-sensitive antioxidant protein, aggravates cypermethrin-mediated α-synuclein overexpression and oxidative alteration of proteins. DJ-1 is also reported to be essential for maintaining stability of nuclear factor erythroid 2-related factor 2 (Nrf2), shielding cells against oxidative insult. Leucine-rich repeat kinase 2 (LRRK2), another protein associated with Parkinson's disease, is also involved in regulating mitochondrial function. However, underlying molecular mechanisms remain elusive. The study intended to explore an interaction of DJ-1, LRRK2, and Nrf2 in the regulation of mitochondrial function in cypermethrin-induced Parkinsonism. Small interfering RNA-mediated knockdown of DJ-1 and LRRK2 gene and pharmacological activation of Nrf2 were performed in rats and/or human neuroblastoma cells with or without cypermethrin. Indexes of oxidative stress, mitochondrial impairment, and Parkinsonism along with α-synuclein expression, post-translational modification, and aggregation were measured. DJ-1 gene knockdown exacerbated cypermethrin-induced increase in oxidative stress and intrinsic apoptosis and reduction in expression of mitochondrial antioxidant proteins via inhibiting nuclear translocation of Nrf2. Additionally, cypermethrin-induced oxidative stress, mitochondrial impairment, and α-synuclein expression and aggregation were found to be suppressed by LRRK2 gene knockdown, by promoting Nrf2 nuclear translocation and expression of mitochondrial antioxidant proteins. Furthermore, Nrf2 activator, sulforaphane, ameliorated cypermethrin-induced mitochondrial impairment and oxidative stress and provided protection against dopaminergic neuronal death. The findings indicate that DJ-1 and LRRK2 independently alter Nrf2-mediated changes and a complex interplay among DJ-1, LRRK2, and Nrf2 exists in the regulation of mitochondrial function in cypermethrin-induced Parkinsonism.


Assuntos
Antioxidantes , Transtornos Parkinsonianos , Piretrinas , Animais , Humanos , Ratos , alfa-Sinucleína/metabolismo , Antioxidantes/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo
20.
J Pept Sci ; 30(5): e3563, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38135900

RESUMO

Familial Parkinson's disease (PD) is frequently linked to multiple disease-causing mutations within Leucine-Rich Repeat Protein Kinase 2 (LRRK2), leading to aberrant kinase activity. Multiple pathogenic effects of enhanced LRRK2 activity have been identified, including loss of cilia and centrosomal cohesion defects. When phosphorylated by LRRK2, Rab8a and Rab10 bind to phospho-specific RILPL effector proteins. RILPL-mediated accumulation of pRabs proximal to the mother centriole is critical for initiating deficits in ciliogenesis and centrosome cohesion mediated by LRRK2. We hypothesized that Rab-derived phospho-mimics may serve to block phosphorylated Rab proteins from docking with RILPL in the context of hyperactive LRRK2 mutants. This would serve as an alternative strategy to downregulate pathogenic signaling mediated by LRRK2, rather than targeting LRRK2 kinase activity itself. To test this theory, we designed a series of constrained peptides mimicking phosphorylated Switch II derived from Rab8. These RILPL interacting peptides, termed RIP, were further shown to permeate cells. Further, several peptides were found to bind RILPL2 and restore ciliogenesis and centrosomal cohesion defects in cells expressing PD-associated mutant LRRK2. This research demonstrates the utility of constrained peptides as downstream inhibitors to target pathogenic LRRK2 activity and may provide an alternative approach to target specific pathways activated by LRRK2.


Assuntos
Doença de Parkinson , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Mutação , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Peptídeos/metabolismo , Fosforilação , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...